

Bonamia sp. detection and characterization by *in situ* hybridization (ISH)

1. Scope

This procedure explains a standard diagnostic test using a 300 bp digoxigenin-labelled probe for *Bonamia* sp. detection to confirm a previous histological diagnosis at the genus level. This procedure does not include the preparation of histological slide or the preparation of the probe by PCR.

Important note: The different steps of the preparation of the histological slides are explained in the procedure "Molluscs processing for diagnosis by histopathology". The only differences are the use of some aminoalkylsilane coated slides instead of classical histological slides and the thickness of the tissue section (5 μ m instead of 2 μ m). The different steps of the preparation of the probe by PCR are explained in the procedure "Bonamia spp detection by Polymerase Chain Reaction and species characterisation by Restriction Fragment Length Polymorphism". The only difference is the addition of dUTP in the PCR Mix.

2. References

Cochennec, N., Le Roux, F., Berthe, F., and Gerard, A. (2000). Detection of *Bonamia ostreae* based on small subunit ribosomal probe. Journal of Invertebrate Pathology 76(1): 26-32.

OIE (2012), Manual of Diagnostic Tests for Aquatic Animals, section 2.4.2, Paris, France. *See the Manual of Diagnostic Tests* (*online*): http://www.oie.int/en/international-standard-setting/aquatic-manual/access-online/

3. Equipment and environmental conditions

This test requires the equipment and environmental conditions classically used for PCR and ISH assays:

- A closed hood equipped with an UV producing system to eliminate potential contaminations when preparing PCR mix
- Two complete sets of pipettes (2 μl; 20 μl; 200 μl and 1000 μl) for PCR mix preparation and for the different *in situ* hybridization steps.
- Three different pipettes: one pipette (2 μ l) to dispense DNA from a bivalve infected with *Bonamai* sp. in PCR mix, one pipette (20 μ l) for BET sampling and another pipette (20 μ l) to load PCR products in agarose gels
- Filter pipette tips (2 μl; 20 μl; 200 μl and 1000 μl) for PCR mix preparation, DNA dispensing and hybridization mix dispensing.
- Pipette tips (20 μ l; 200 μ l and 1000 μ l) to collect BET and to load amplification products in agarose gel, to collect and dispense Proteinase K suspension, probes and buffers on slides
- A thermal cycler to perform amplifications
- A horizontal electrophoresis system for PCR products electrophoresis
- An UV table to observe PCR products after agarose gel electrophoresis
- A system to acquire pictures of the gels
- A humid chamber to maintain slides in humid conditions
- A heated slide moat to denature target DNA present in slides
- An oven to maintain slides during hybridization step at 42°C and under gentle shaking
- Paper towelling
- Racks for histological slides
- Aminoalkylsilane coated slides (SIGMA)
- Hybridization chamber (ABgene) to be placed on slides during probe and antibody incubation steps
- A timer

Manipulator must wear a lab coat and some gloves during all the different steps described bellow. Lab coat and gloves must be changed preferably after each main step of the PCR: preparation of PCR mix, DNA dispensing, amplification and gel loading. It is recommended to perform these different steps in different rooms.

Amplification and gel loading/electrophoresis in particular should take place in a room separate from PCR mix preparation and DNA dispensing.

4. Procedure

4.1. Probe preparation (by PCR)

The probe is prepared by PCR with DNA from bivalve highly infected with *Bonamia* sp. (for DNA extraction see the procedure "*Bonamia* spp detection by Polymerase Chain Reaction and species characterisation by Restriction Fragment Length Polymorphism"). DNA is extracted from a piece of tissue (e.g. gill, heart or mantle) using QIAamp® DNA Mini Kit (QIAGEN) and following instructions for Tissue Protocol.

The probe is prepared as described in the procedure "*Bonamia* spp detection by Polymerase Chain Reaction and species characterisation by Restriction Fragment Length Polymorphism". The only difference is the addition of Dig labelled dUTP (Roche) in the PCR Mix.

PCR Mix for each tube is:

	Volume per tube	Final concentration
Buffer (10X)	10 μl	1X
MgCl ₂ (25 mM)	10 μl	2.5 mM
dNTP (2mM)	10 μl	0,2 mM
Dig Labelled dUTP (1 mM)	2.5 μl	0.025 mM
Βο (100 μΜ)	1 μl	1 μΜ
BoAS (100 μM)	1 μl	1 μΜ
Taq polymérase (5U/μl)	1 μl	5 U
dH ₂ O	64.5 μl	

- 98 µl of this PCR mix is dispensed in each PCR tube
- 2 μl of extracted DNA (100 ng/μl) is added to each tube

The primers used for the probe preparation are:

Bo: 5'-CAT-TTA-ATT-GGT-CGG-GCC-GC-3' BoAS: 5'-CTG-ATC-GTC-TTC-GATCCC-CC-3'

4.2. Hybridization

4.2.1. Reactives

- Xylene
- Ethanol 100 %
- Ethanol 95 %
- TE:

 Tris base
 1 M
 50 ml

 EDTA 0.5M, pH 8
 20 ml

 NaCl 5 M
 2 ml

Distilled water for 11

- Proteinase K initial solution at 10 mg/ml in TE is used diluted 100 X
- SSC 20X:

NaCi (0.3 M) 88.2 g NaCl (3 M) 175.3 g

Distilled water for 11

Ajust pH at 7

- Denhart 5	50 X:		
	Ficoll	5 g	
_	Polyvinil pyrolidone	5 g	
	Serumalbumine bovine	5 g	
	Distilled water for 500 ml	- 8	
	Kept at −20°C		
	ation buffer:		
•	lextran sulfate	1 g	
S	SSC 20X	2 ml	
	ARN from yeast at 10 mg/ml	150 µl	
	Denhart 50 X	200 µl	
	Distilled water for a final volume of 5 ml	1	
	Heat the suspension and finally add:		
	Formamid at 100 %	5 ml	
- Buffer D	ig 1:		
	Maleic acid	11.61 g	
N	NaCl 5M	30 ml	
Γ	Distilled water for 11		
	Adjust at pH 7.5 (by adding about 15.5 g of N	IaOH)	
	Autoclave	,	
- Buffer D	ig 2:		
	Blocking reagent	1 g	
	Buffer Dig 1 for 100 ml	C	
	Mix at 50°C		
k	Kept at −20°C		
- Buffer D			
Γ	Tris 1 M, pH 8	50 ml	
N	NaCl 5 M	10 ml	
N	MgCl ₂ 1 M	25 ml	
Ι	Distilled water for 500 ml		
A	Ajust at pH 9.5		
A	Autoclave		
- Buffer D	ig 4:		
	Гris 1 M, pH 8	5 ml	
	EDTA 0.5 M, pH 8	1 ml	
Ι	Distilled water for 500 ml		
A	Autoclave		
- Detection solution:			
	NBT/BCIP (67 % in DMSO, v/v)	20 μ1	
F	Buffer Dig 3	1 ml	

4.2.2. Controls

Two types of control are used:

- Negative controls consist of tissue sections from controlled non infected oysters or mussels
- Positive controls consist of tissue sections from controlled infected oysters or mussels

4.2.3. Deparaffinization

- 1. Sections are immersed twice in xylene for 10 min.
- 2. Sections are dehydrated by two successive immersions in ethanol 100% for 10 min.
- 3. Sections are air dried.

4.2.4. Deproteinization

- 1. 200 µl of proteinase K (100 µg/ml in TE) are displayed on each section.
- 2. Slides are incubated for 15 min at 37°C in a humid chamber.
- 3. Slides are dehydrated in ethanol 95 % for 1 min and then in ethanol 100 % for 1 min.

4.2.5. Hybridization

- 1. Adhesive frames (ABgene) are fixed on each slide
- 2. 100 µl of a mix consisting of hybridization buffer and digoxigenin labelled probe (between 5 and 10 ng/100µl of buffer) are spread inside the frame on the tissue.
- 3. Sections are covered with plastic coverlids.
- 4. Slides are denaturated for 5 min at 94°C and cooled on ice.
- 5. Slides are then incubated at 42°C in a humid chamber overnight

4.2.6. Washing and detection

- Adhesive frames are deleted.
- Slides are immersed in SSC 2X at room temperature twice for 5 min.
- Slides are immersed in SSC0.4X at 42°C for 10 min.
- Slides are immersed in buffer Dig 1 for 1 min.
- 200 µl of buffer Dig 2 are spread on the tissue and slides are incubated for 30 min at room temperature.
- 200 μl of a mix consisting of buffer Dig **2** and anti-digoxigenin- alkaline phosphatase conjugate (1:500 in buffer Dig **2**) are added on the sections
- Slides are incubated in a humid chamber at room temperature for 1 h.
- Slides are washed in buffer Dig 1 twice for 1 min.
- Slides are immersed in buffer Dig 3 for 10 min
- 200 µl of detection solution are added on each slide
- Slides are incubated for 30 minutes in the dark or more if the positive control does not show positive signal
- Reaction is stopped by immersion in buffer Dig 4

4.3. Counter staining and mounting

4.3.1. Reactives

- Bismark brown Y

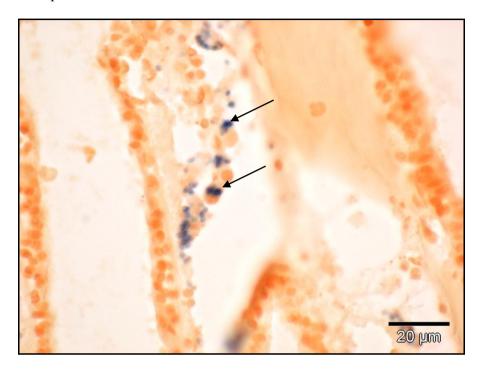
Bismark brown Y 0.5 g Ethanol at 30 % 100 ml

Filter the solution on a coffee filter

- Ethanol 100
- Ethanol 95
- Xylene
- Mounting medium (e.g. Eukitt[®] resin)

4.3.2. Counter staining

- 1. Slides are immersed in Bismark brown Y for 15 sec
- 2. Slides are rinsed under tap water
- 3. Slides are air dried


4.3.3. Mounting

- 1. Slides are rinsed 10 to 30 sec in Xylene
- 2. A drop of mounting medium (e.g. Eukitt® resin) is added to mount the cover-slip
- 3. Slides are observed under a light microscope

5. Interpretation

- Negative controls must appear negative.
- Positive controls must appear positive.
- Slides are checked for positive signal looking like dark purple spots (see picture below).
- A positive signal in an individual detected positive by histology allows concluding that it is an infection with *Bonamia* sp.

Picture: Flat oyster *Ostrea edulis* infected with *Bonamia* sp. tested by *in situ* hybridization. The parasites appear as dark purple spots in the connective tissue and in haemocytes of the gill (arrows).

6. Suppliers

Product	Supplier	Reference
Anti-Digoxigenin-AP, Fab fragments	Roche	11 093 274 910
Bismark brown Y	Sigma	B2759
Blocking reagent	Roche	11096176001
Denhart 50X	Euromedex	EU0505A
Denhart 50X	Sigma	D2532
Dextran sulfate	Euromedex	1020A
Dig dUTP	Roche	11 093 088 910
EDTA	Sigma	E5134
Formamide 100%	Euromedex	1117
Maleic acid	Sigma	M0375
$MgCl_2$	Sigma	M0250
NaCl	Euromedex	1112A
NBT/BCIP	Roche	11681451001
Proteinase K	Euromedex	EU 0090-B
SSC 20X	Euromedex	EU 0300-A
t ARN	Sigma	R8508
Tris	Sigma	T1503